No complete linear term rewriting system for propositional logic
نویسندگان
چکیده
Recently it has been observed that the set of all sound linear inference rules in propositional logic is already coNP-complete, i.e. that every boolean tautology can be written as a (leftand right-) linear rewrite rule. This raises the question of whether there is a rewriting system on linear terms of propositional logic that is sound and complete for the set of all such rewrite rules. We show in this paper that, as long as reduction steps are polynomial-time decidable, such a rewriting system does not exist unless coNP = NP. We draw tools and concepts from term rewriting, boolean function theory and graph theory, in order to access the required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for propositional logic. 1998 ACM Subject Classification Dummy classification
منابع مشابه
Rewrite Rule Systems for Modal Propositional Logic
D This paper explains new results relating modal propositional logic and rewrite rule systems. More precisely, we give complete term rewriting systems for the modal propositional systems known as K, Q, T, and S5. These systems are presented as extensions of Hsiang’s system for classical propositional calculus. We have checked local confluence with the rewrite rule system K.B. (cf. the Knuth-Ben...
متن کاملRefutational Theorem Proving Using Term-Rewriting Systems
In this paper we propose a new approach to theorem proving in first-order logic based on the term-rewriting method. First for propositional calculus, we introduce a canonical term-rewriting system for Boolean algebra. This system enables us to transform the first-order predicate calculus into a form of equational logic, and to develop several complete strategies (both clausal and nonclausal) fo...
متن کاملRewriting with Linear Inferences in Propositional Logic
Linear inferences are sound implications of propositional logic where each variable appears exactly once in the premiss and conclusion. We consider a specific set of these inferences, MS, first studied by Straßburger, corresponding to the logical rules in deep inference proof theory. Despite previous results characterising the individual rules of MS, we show that there is no polynomial-time cha...
متن کاملA Classical Propositional Logic for Reasoning About Reversible Logic Circuits
We propose a syntactic representation of reversible logic circuits in their entirety, based on Feynman’s control interpretation of Toffoli’s reversible gate set. A pair of interacting proof calculi for reasoning about these circuits is presented, based on classical propositional logic and monoidal structure, and a natural order-theoretic structure is developed, demonstrated equivalent to Boolea...
متن کاملA Fully Abstract Model for Graph-Interpreted Temporal Logic
Graph-interpreted temporal logic is an extension of propositional temporal logic for specifying graph transition systems (i.e., transition systems whose states are graphs). Recently, this logic has been used for the specification and compositional verification of safety and liveness properties of rule-based graph transformation systems. However, no calculus or decision procedure for this logic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015